Published in

Wiley Open Access, Energy Conversion and Economics, 5(4), p. 346-363, 2023

DOI: 10.1049/enc2.12098

Links

Tools

Export citation

Search in Google Scholar

Stochastic pre‐disaster planning and post‐disaster restoration to enhance distribution system resilience during typhoons

Journal article published in 2023 by Hui Hou, Junyi Tang ORCID, Zhiwei Zhang, Xixiu Wu, Ruizeng Wei, Lei Wang, Huan He
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn recent years, extreme weather events, such as typhoons, have led to large‐scale power outages in distribution systems. As a result, developing strategies to bolster distribution system resilience has become imperative. This paper proposes a two‐stage stochastic programming model aimed at enhancing this resilience. Prior to a typhoon, the first stage establishes a comprehensive wind field model based on extreme value distribution for accurate wind speed predictions. Simultaneously, a refined stress–strength interference model is used to determine the likelihood of distribution line failures. Taking into account the uncertainty of line damage, repair crews and mobile emergency generators are then strategically positioned at staging depots. Following the typhoon, the second stage coordinates network reconfiguration, dispatches repair crews, and mobilizes mobile emergency generators to minimize load shedding and expedite repairs. This model was validated on the IEEE 33‐bus distribution system, coupled with a corresponding transportation network, utilizing data from the 2018 super typhoon Mangkhut'' in China. Simulations indicate that our approach can effectively reduce load shedding and power outage durations, thereby enhancing the resilience of distribution systems.