Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-39967-4

Links

Tools

Export citation

Search in Google Scholar

Two-dimensional Kβ-Kα fluorescence spectrum by nonlinear resonant inelastic X-ray scattering

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh sensitivity of the Kβ fluorescence spectrum to electronic state is widely used to investigate spin and oxidation state of first-row transition-metal compounds. However, the complex electronic structure results in overlapping spectral features, and the interpretation may be hampered by ambiguity in resolving the spectrum into components representing different electronic states. Here, we tackle this difficulty with a nonlinear resonant inelastic X-ray scattering (RIXS) scheme, where we leverage sequential two-photon absorption to realize an inverse process of the Kβ emission, and measure the successive Kα emission. The nonlinear RIXS reveals two-dimensional (2D) Kβ-Kα fluorescence spectrum of copper metal, leading to better understanding of the spectral feature. We isolate 3d-related satellite peaks in the 2D spectrum, and find good agreement with our multiplet ligand field calculation. Our work not only advances the fluorescence spectroscopy, but opens the door to extend RIXS into the nonlinear regime.