Published in

BioMed Central, BMC Bioinformatics, 1(23), 2022

DOI: 10.1186/s12859-022-04975-6

Links

Tools

Export citation

Search in Google Scholar

DeepMPM: a mortality risk prediction model using longitudinal EHR data

Journal article published in 2022 by Fan Yang, Jian Zhang, Wanyi Chen, Yongxuan Lai, Ying Wang, Quan Zou
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Accurate precision approaches have far not been developed for modeling mortality risk in intensive care unit (ICU) patients. Conventional mortality risk prediction methods can hardly extract the information in longitudinal electronic medical records (EHRs) effectively, since they simply aggregate the heterogeneous variables in EHRs, ignoring the complex relationship and interactions between variables and the time dependence in longitudinal records. Recently deep learning approaches have been widely used in modeling longitudinal EHR data. However, most existing deep learning-based risk prediction approaches only use the information of a single disease, neglecting the interactions between multiple diseases and different conditions. Results In this paper, we address this unmet need by leveraging disease and treatment information in EHRs to develop a mortality risk prediction model based on deep learning (DeepMPM). DeepMPM utilizes a two-level attention mechanism, i.e. visit-level and variable-level attention, to derive the representation of patient risk status from patient’s multiple longitudinal medical records. Benefiting from using EHR of patients with multiple diseases and different conditions, DeepMPM can achieve state-of-the-art performances in mortality risk prediction. Conclusions Experiment results on MIMIC III database demonstrates that with the disease and treatment information DeepMPM can achieve a good performance in terms of Area Under ROC Curve (0.85). Moreover, DeepMPM can successfully model the complex interactions between diseases to achieve better representation learning of disease and treatment than other deep learning approaches, so as to improve the accuracy of mortality prediction. A case study also shows that DeepMPM offers the potential to provide users with insights into feature correlation in data as well as model behavior for each prediction.