Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Immunology, 88(8), 2023

DOI: 10.1126/sciimmunol.adg6155

Links

Tools

Export citation

Search in Google Scholar

Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High neonatal susceptibility to meningitis has been attributed to the anatomical barriers that act to protect the central nervous system (CNS) from infection being immature and not fully developed. However, the mechanisms by which pathogens breach CNS barriers are poorly understood. Using the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) to study virus propagation into the CNS during systemic infection, we demonstrate that mortality in neonatal, but not adult, mice is high after infection. Virus propagated extensively from the perivenous sinus region of the dura mater to the leptomeninges, choroid plexus, and cerebral cortex. Although the structural barrier of CNS border tissues is comparable between neonates and adults, immunofluorescence staining and single-cell RNA sequencing analyses revealed that the neonatal dural immune cells are immature and predominantly composed of CD206 hi macrophages, with major histocompatibility complex class II (MHCII) hi macrophages being rare. In adults, however, perivenous sinus immune cells were enriched in MHCII hi macrophages that are specialized for producing antiviral molecules and chemokines compared with CD206 hi macrophages and protected the CNS against systemic virus invasion. Our findings clarify how systemic pathogens enter the CNS through its border tissues and how the immune barrier at the perivenous sinus region of the dura blocks pathogen access to the CNS.