Published in

Oxford University Press, American Journal of Epidemiology, 6(192), p. 1006-1015, 2023

DOI: 10.1093/aje/kwad038

Links

Tools

Export citation

Search in Google Scholar

A Bayesian Approach for Estimating the Survivor Average Causal Effect When Outcomes Are Truncated by Death in Cluster-Randomized Trials

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Many studies encounter clustering due to multicenter enrollment and nonmortality outcomes, such as quality of life, that are truncated due to death—that is, missing not at random and nonignorable. Traditional missing-data methods and target causal estimands are suboptimal for statistical inference in the presence of these combined issues, which are especially common in multicenter studies and cluster-randomized trials (CRTs) carried out among the elderly or seriously ill. Using principal stratification, we developed a Bayesian estimator that jointly identifies the always-survivor principal stratum in a clustered/hierarchical data setting and estimates the average treatment effect among them (i.e., the survivor average causal effect (SACE)). In simulations, we observed low bias and good coverage with our method. In a motivating CRT, the SACE and the estimate from complete-case analysis differed in magnitude, but both were small, and neither was incompatible with a null effect. However, the SACE estimate has a clear causal interpretation. The option to assess the rigorously defined SACE estimand in studies with informative truncation and clustering can provide additional insight into an important subset of study participants. Based on the simulation study and CRT reanalysis, we provide practical recommendations for using the SACE in CRTs and software code to support future research.