Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Medicine, 1(20), 2022

DOI: 10.1186/s12916-022-02480-4

Links

Tools

Export citation

Search in Google Scholar

Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, July–November 2021

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background COVID-19 vaccines have been crucial in the pandemic response and understanding changes in vaccines effectiveness is essential to guide vaccine policies. Although the Delta variant is no longer dominant, understanding vaccine effectiveness properties will provide essential knowledge to comprehend the development of the pandemic and estimate potential changes over time. Methods In this population-based cohort study, we estimated the vaccine effectiveness of Comirnaty (Pfizer/BioNTech; BNT162b2), Spikevax (Moderna; mRNA-1273), Vaxzevria (AstraZeneca; ChAdOx nCoV-19; AZD1222), or a combination against SARS-CoV-2 infections, hospitalisations, intensive care admissions, and death using Cox proportional hazard models, across different vaccine product regimens and age groups, between 15 July and 31 November 2021 (Delta variant period). Vaccine status is included as a time-varying covariate and all models were adjusted for age, sex, comorbidities, county of residence, country of birth, and living conditions. Data from the entire adult Norwegian population were collated from the National Preparedness Register for COVID-19 (Beredt C19). Results The overall adjusted vaccine effectiveness against infection decreased from 81.3% (confidence interval (CI): 80.7 to 81.9) in the first 2 to 9 weeks after receiving a second dose to 8.6% (CI: 4.0 to 13.1) after more than 33 weeks, compared to 98.6% (CI: 97.5 to 99.2) and 66.6% (CI: 57.9 to 73.6) against hospitalisation respectively. After the third dose (booster), the effectiveness was 75.9% (CI: 73.4 to 78.1) against infection and 95.0% (CI: 92.6 to 96.6) against hospitalisation. Spikevax or a combination of mRNA products provided the highest protection, but the vaccine effectiveness decreased with time since vaccination for all vaccine regimens. Conclusions Even though the vaccine effectiveness against infection waned over time, all vaccine regimens remained effective against hospitalisation after the second vaccine dose. For all vaccine regimens, a booster facilitated recovery of effectiveness. The results from this support the use of heterologous schedules, increasing flexibility in vaccination policy.