American Association for the Advancement of Science, Science, 6533(371), p. 1019-1025, 2021
Full text: Unavailable
A red-letter day for RBC research The study of primary human red blood cell (huRBC) disorders such as sickle cell disease (SCD) and infectious diseases such as malaria has been hampered by a lack of in vivo models of human erythropoiesis. Song et al. transferred human fetal liver cells into MISTRG mice, which are immunodeficient and are genetically engineered with several human genes involved in hematopoiesis. This approach was unsuccessful because mature huRBCs are rapidly destroyed in the mouse liver. They then used CRISPR-Cas9 to mutate these mice into a fumarylacetoacetate hydrolase–deficient strain, allowing them to replace the mouse liver with engrafted human hepatocytes. These mice exhibited enhanced human erythropoiesis and circulating huRBC survival and could recapitulate SCD pathology when reconstituted with SCD-derived HSCs. Science , this issue p. 1019