Published in

EMBO Press, The EMBO Journal, 2023

DOI: 10.15252/embj.2023114372

Links

Tools

Export citation

Search in Google Scholar

APP substrate ectodomain defines amyloid‐β peptide length by restraining γ‐secretase processivity and facilitating product release

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSequential proteolysis of the amyloid precursor protein (APP) by γ‐secretases generates amyloid‐β (Aβ) peptides and defines the proportion of short‐to‐long Aβ peptides, which is tightly connected to Alzheimer's disease (AD) pathogenesis. Here, we study the mechanism that controls substrate processing by γ‐secretases and Aβ peptide length. We found that polar interactions established by the APPC99 ectodomain (ECD), involving but not limited to its juxtamembrane region, restrain both the extent and degree of γ‐secretases processive cleavage by destabilizing enzyme–substrate interactions. We show that increasing hydrophobicity, via mutation or ligand binding, at APPC99‐ECD attenuates substrate‐driven product release and rescues the effects of Alzheimer's disease‐associated pathogenic γ‐secretase and APP variants on Aβ length. In addition, our study reveals that APPC99‐ECD facilitates the paradoxical production of longer Aβs caused by some γ‐secretase inhibitors, which act as high‐affinity competitors of the substrate. These findings assign a pivotal role to the substrate ECD in the sequential proteolysis by γ‐secretases and suggest it as a sweet spot for the potential design of APP‐targeting compounds selectively promoting its processing by these enzymes.