Published in

SpringerOpen, Nano-Micro Letters, 1(13), 2021

DOI: 10.1007/s40820-021-00682-8

Links

Tools

Export citation

Search in Google Scholar

All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS2@C/CNT Cathode

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAluminum-ion batteries (AIBs) are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource. However, the inferior rate capacity and poor all-climate performance, especially the decayed capacity under low temperature, are still critical challenges toward high-specific-capacity AIBs. Herein, we report a binder-free and freestanding metal–organic framework-derived FeS2@C/carbon nanotube (FeS2@C/CNT) as a novel all-climate cathode in AIBs working under a wide temperature window between −25 and 50 °C with exceptional flexibility. The resultant cathode not only drastically suppresses the side reaction and volumetric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity (above 151 mAh g−1 at 2 A g−1) at room temperature. More importantly, to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs, the new hierarchical conductive composite FeS2@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g−1 capacity even under −25 °C. The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.