Published in

MDPI, Coatings, 2(13), p. 278, 2023

DOI: 10.3390/coatings13020278

Links

Tools

Export citation

Search in Google Scholar

Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Absorption losses and laser-induced damage threshold (LIDT) are considered to be the major constraints for development of optical coatings for high-power laser optics. Such coatings require paramount properties, such as low losses due to optical absorption, high mechanical stability, and enhanced damage resistance, to withstand high-intensity laser pulses. In this work, heterostructures were developed by sub-nanometer thin films of SiO2 and HfO2 using the plasma-enhanced atomic layer deposition (PEALD) technique. Thin-film characterization techniques, such as spectroscopic ellipsometry, spectrophotometry, substrate curvature measurements, X-ray reflectivity, and Fourier transform infrared spectroscopy, were employed for extracting optical constants, residual stress, layer formation, and functional groups present in the heterostructures, respectively. These heterostructures demonstrate tunable refractive index, bandgap, and improved optical losses and LIDT properties. The films were incorporated into antireflection coatings (multilayer stacks and graded-index coatings) and the LIDT was determined at 355 nm wavelength by the R-on-1 method. Optical absorptions at the reported wavelengths were characterized using photothermal common-path interferometry and laser-induced deflection techniques.