Published in

Optica, Photonics Research, 1(11), p. B40, 2022

DOI: 10.1364/prj.474328

Links

Tools

Export citation

Search in Google Scholar

Fundamental limits for transmission modulation in VO<sub>2</sub> metasurfaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interest in dynamic modulation of light by ultra-thin materials exhibiting insulator–metal phase transition, such as VO 2 , has rapidly grown due to the myriad industrial applications, including smart windows and optical limiters. However, for applications in the telecommunication spectral band, the light modulation through a thin VO 2 film is low due to the presence of strong material loss. Here, we demonstrate tailored nanostructuring of VO 2 to dramatically enhance its transmission modulation, reaching a value as high as 0.73, which is 2 times larger than the previous modulation achieved. The resulting designs, including free-topology optimization, demonstrate the fundamental limit in acquiring the desired optical performance, including achieving positive or negative transmission contrast. Our results on nanophotonic management of lossy nanostructured films open new opportunities for applications of VO 2 metasurfaces.