Published in

MDPI, Bioengineering, 11(10), p. 1245, 2023

DOI: 10.3390/bioengineering10111245

Links

Tools

Export citation

Search in Google Scholar

A Synthesizing Semantic Characteristics Lung Nodules Classification Method Based on 3D Convolutional Neural Network

Journal article published in 2023 by Yanan Dong, Xiaoqin Li, Yang Yang, Meng Wang ORCID, Bin Gao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Early detection is crucial for the survival and recovery of lung cancer patients. Computer-aided diagnosis system can assist in the early diagnosis of lung cancer by providing decision support. While deep learning methods are increasingly being applied to tasks such as CAD (Computer-aided diagnosis system), these models lack interpretability. In this paper, we propose a convolutional neural network model that combines semantic characteristics (SCCNN) to predict whether a given pulmonary nodule is malignant. The model synthesizes the advantages of multi-view, multi-task and attention modules in order to fully simulate the actual diagnostic process of radiologists. The 3D (three dimensional) multi-view samples of lung nodules are extracted by spatial sampling method. Meanwhile, semantic characteristics commonly used in radiology reports are used as an auxiliary task and serve to explain how the model interprets. The introduction of the attention module in the feature fusion stage improves the classification of lung nodules as benign or malignant. Our experimental results using the LIDC-IDRI (Lung Image Database Consortium and Image Database Resource Initiative) show that this study achieves 95.45% accuracy and 97.26% ROC (Receiver Operating Characteristic) curve area. The results show that the method we proposed not only realize the classification of benign and malignant compared to standard 3D CNN approaches but can also be used to intuitively explain how the model makes predictions, which can assist clinical diagnosis.