Published in

Oxford University Press, Nephrology Dialysis Transplantation, 2023

DOI: 10.1093/ndt/gfad226

Links

Tools

Export citation

Search in Google Scholar

Plasma NGAL levels in stable kidney transplant recipients and the risk of allograft loss

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The object of this study was to investigate the utility of Neutrophil gelatinase-associated lipocalin (NGAL) and Calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). Methods 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss (GL) was evaluated during a 58-month follow-up. Results Among biomarkers, pNGAL showed best predictive ability for graft loss and was the only biomarker with an AUC > 0.7 for GL within 5 years. Patients with GL within 5 years (n=49) had a median pNGAL of 304[IQR 235-358] versus 182[IQR 128 -246]ng/ml with surviving grafts (p<0.001). Time-dependent Receiver operating characteristic analyses at 58 months indicated an Area-Under-the-Curve (AUC) for pNGAL of 0.795, serum creatinine (sCr) based estimated glomerular filtration rate (eGFR) CKD EPI had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for GL with death as competing risk (age, transplant age, presence of donor specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with GL (subdistribution Hazard ratio (sHR) for binary log transfomed pNGAL (log2 (pNGAL)) (3.4 95% CI 2.24-5.15), p<0.0001). This association was substantially attenuated when eGFR was added to the model (sHR for log2 (pNGAL) 1.63 95% CI 0.92-2.88, p=0.095). Category-free net reclassification improvement of a risk model including log2(pNGAL) additionally to conventional risk factors and eGFR was 54.3% (95% CI 9.2 to 99.3%) but C-statistic did not improve significantly. Conclusions pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared to baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted.