Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, APL Materials, 10(10), 2022

DOI: 10.1063/5.0116981

Links

Tools

Export citation

Search in Google Scholar

Synthesis of antiferromagnetic Weyl semimetal Mn3Ge on insulating substrates by electron beam assisted molecular beam epitaxy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The antiferromagnetic kagome semimetals Mn3X (X = Ge, Sn, Ga) are of great interest due to properties arising from their Berry curvature, such as large anomalous Nernst and anomalous Hall coefficients, and spin to charge conversion efficiencies at ambient temperatures. However, the synthesis of epitaxial thin films of Mn3Ge in the desired hexagonal phase has been challenging because they do not wet insulating substrates, necessitating the use of a metallic buffer layer. Furthermore, a ferrimagnetic tetragonal phase also forms readily under typical growth conditions, interfering with hexagonal phase properties. We have synthesized atomically smooth and continuous epitaxial thin films of hexagonal Mn3Ge directly on insulating LaAlO3 (111) substrates using electron beam assisted molecular beam epitaxy, using a three-step process that mitigates the formation of the tetragonal phase. The anomalous Nernst coefficient is found to be more than six times larger in our films than in sputtered thin films of Mn3Ge and significantly larger than that of Fe. Our approach can be used to grow thin layers of kagome materials, without interference from a buffer layer in transport properties, and may be applicable to a broader range of materials with large surface energies that do not grow readily on insulating substrates.