American Association for the Advancement of Science, Science, 6665(381), p. 1440-1445, 2023
Full text: Unavailable
Molecular clocks are the basis for dating the divergence between lineages over macroevolutionary timescales (~10 5 to 10 8 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes display a clocklike behavior. This “epimutation clock” is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation clocks recapitulate known topologies and branching times of intraspecies phylogenetic trees in the self-fertilizing plant Arabidopsis thaliana and the clonal seagrass Zostera marina , which represent two major modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.