Published in

MDPI, Toxics, 10(11), p. 823, 2023

DOI: 10.3390/toxics11100823

Links

Tools

Export citation

Search in Google Scholar

Identifying the Relationship between PM2.5 and Hyperlipidemia Using Mendelian Randomization, RNA-seq Data and Model Mice Subjected to Air Pollution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Air pollution is an important public health problem that endangers human health. However, the casual association and pathogenesis between particles < 2.5 μm (PM2.5) and hyperlipidemia remains incompletely unknown. Mendelian randomization (MR) and transcriptomic data analysis were performed, and an air pollution model using mice was constructed to investigate the association between PM2.5 and hyperlipidemia. MR analysis demonstrated that PM2.5 is associated with hyperlipidemia and the triglyceride (TG) level in the European population (IVW method of hyperlipidemia: OR: 1.0063, 95%CI: 1.0010–1.0118, p = 0.0210; IVW method of TG level: OR: 1.1004, 95%CI: 1.0067–1.2028, p = 0.0350). Mest, Adipoq, Ccl2, and Pcsk9 emerged in the differentially expressed genes of the liver and plasma of PM2.5 model mice, which might mediate atherosclerosis accelerated by PM2.5. The studied animal model shows that the Paigen Diet (PD)-fed male LDLR−/− mice had higher total cholesterol (TC), TG, and CM/VLDL cholesterol levels than the control group did after 10 times 5 mg/kg PM2.5 intranasal instillation once every three days. Our study revealed that PM2.5 had causality with hyperlipidemia, and PM2.5 might affect liver secretion, which could further regulate atherosclerosis. The lipid profile of PD-fed Familial Hypercholesterolemia (FH) model mice is more likely to be jeopardized by PM2.5 exposure.