Dissemin is shutting down on January 1st, 2025

Published in

EMBO Press, EMBO Reports, 2023

DOI: 10.15252/embr.202356865

Links

Tools

Export citation

Search in Google Scholar

A1 is induced by pathogen ligands to limit myeloid cell death and NLRP3 inflammasome activation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractProgrammed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro‐survival BCL‐2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post‐translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK‐dependent apoptosis and the subsequent NLRP3 inflammasome‐dependent and inflammasome‐independent maturation of the inflammatory cytokine IL‐1β. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL‐1β activation triggered by Neisseria gonorrhoeae‐derived outer membrane vesicles (NOMVs). Consequently, A1‐deficient mice exhibit heightened IL‐1β production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host‐directed antimicrobial therapeutics.