Published in

American Society of Hematology, Blood, 2023

DOI: 10.1182/blood.2022018252

Links

Tools

Export citation

Search in Google Scholar

In vivo HSC prime editing rescues Sickle Cell Disease in a mouse model

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sickle Cell Disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentivirus vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a non-integrating, prime editor-expressing virus vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ~40% of bS alleles in HSCs. On average 43% of HbS was replaced by HbA thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.