Published in

Georg Thieme Verlag, Röfo. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 08(195), p. 691-698, 2023

DOI: 10.1055/a-2018-3396

Links

Tools

Export citation

Search in Google Scholar

Photon-Counting Computed Tomography – Basic Principles, Potenzial Benefits, and Initial Clinical Experience

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Photon-counting computed tomography (PCCT) is a promising new technology with the potential to fundamentally change today’s workflows in the daily routine and to provide new quantitative imaging information to improve clinical decision-making and patient management. Method The content of this review is based on an unrestricted literature search on PubMed and Google Scholar using the search terms “Photon-Counting CT”, “Photon-Counting detector”, “spectral CT”, “Computed Tomography” as well as on the authors’ experience. Results The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCCT allows counting of every single photon at the detector level. Based on the identified literature, PCCT phantom measurements and initial clinical studies have demonstrated that the new technology allows improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. Conclusion For clinical practice, the potential benefits include fewer beam hardening artifacts, radiation dose reduction, and the use of new contrast agents. In this review, we will discuss basic technical principles and potential clinical benefits and demonstrate first clinical use cases. Key Points: Citation Format