Published in

MDPI, Remote Sensing, 18(14), p. 4604, 2022

DOI: 10.3390/rs14184604

Links

Tools

Export citation

Search in Google Scholar

Distinguishing the Impacts of Rapid Urbanization on Ecosystem Service Trade-Offs and Synergies: A Case Study of Shenzhen, China

Journal article published in 2022 by Zhenhuan Liu ORCID, Ziyu Liu, Yi Zhou ORCID, Qiandu Huang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cities and urban areas are an important part of global sustainable development, and the health and well-being of urban residents are closely related to the quality, quantity, and diversity of urban ecosystem services. Although the rapid urbanization process has changed the structure and function of urban ecosystems, which is notably different from natural ecosystems, the affected ecosystem services and their interactions—the trade-off impact of urbanization intensity on ecosystem services—remain to be discussed. Using land use/land cover and impervious surface area remote sensing datasets, and InVEST and RUSLE-related ecosystem services models to evaluate seven typical ecosystem services in Shenzhen, this study explored the evolution of multiple ecosystem service trade-offs and synergies during the transition from a natural ecosystem to an urban ecosystem, and how they are affected by urbanization intensity through correlation analysis and a discrete time-step simulation model. The results show that: (1) from 1978 to 2018, in the process of ecosystem transformation, grain production dropped from 228,795 tons to 11,733 tons, fruit production peaked in 1990 at 271,508 tons, and service capacity of both showed obvious degradation. Conversely, the cultural service capacity was remarkably enhanced. (2) With the increase in urbanization level, the trade-off and synergy of ecosystem services gradually transition from linear to nonlinear. The rapid urbanization process drives the nonlinear degradation of ecosystem services and the nonlinear enhancement of synergy. (3) Over the past four decades, ecosystem service bundles within the same kilometer grid have shown a quadratic curve-like decrease with increasing impervious surface area, slowly in the early stages and faster in the later stages. This study concludes that urbanization intensity has a significant impact on ecosystem service trade-offs, which can provide support for the formulation of ecological protection and restoration strategies in territorial space based on ecosystem services.