Published in

IOP Publishing, 2D Materials, 4(10), p. 045001, 2023

DOI: 10.1088/2053-1583/ace374

Links

Tools

Export citation

Search in Google Scholar

Electronic dispersion, correlations and stacking in the photoexcited state of 1T-TaS<sub>2</sub>

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Here we perform angle and time-resolved photoelectron spectroscopy on the commensurate charge density wave (CDW) phase of 1T-TaS2. Data with different probe pulse polarization are employed to map the dispersion of electronic states below and above the chemical potential. Upon photoexcitation, the fluctuations of CDW order erase the band dispersion and squeeze the electronic states near to the chemical potential. This transient phase sets within half a period of the coherent lattice motion and is favored by strong electronic correlations. The experimental results are compared to density-functional theory calculations with a self-consistent evaluation of the Coulomb repulsion. Our simulations indicate that the screening of Coulomb repulsion depends on the stacking order of the TaS2 layers. The entanglement of such degrees of freedom suggest that both the structural order and electronic repulsion are locally modified by the photoinduced CDW fluctuations.