Published in

American Institute of Physics, Applied Physics Letters, 12(122), 2023

DOI: 10.1063/5.0145818

Links

Tools

Export citation

Search in Google Scholar

Doping effects on the ferroelectric properties of wurtzite nitrides

Journal article published in 2023 by Zhijie Liu ORCID, Xinyu Wang, Xingyue Ma ORCID, Yurong Yang ORCID, Di Wu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ferroelectric materials have been explored for a long time for easy integration with state-of-the-art semiconductor technologies. Doped wurtzite nitrides have been reported as promising candidates due to their high stability, compatibility, and scalability. We investigate doping effects on ferroelectric properties of Sc-doped AlN (AlScN) and B-doped AlN (AlBN) by first-principles methods. The energy barrier against polarization switching is observed to decrease with increasing doping concentration at low concentration ranges, which is the origin of the emerging ferroelectricity in doped AlN. Further increasing the doping concentration to a critical value, the ferroelectric wurtzite phase transforms into paraelectric phases (a rock salt phase for AlScN and a zinc blende phase for AlBN), making it invalid to decrease the coercivity by increasing the doping concentration. Furthermore, it is revealed that different nonpolar structures (a hexagonal phase for AlScN and a β-BeO phase for AlBN) appear in the ferroelectric switching pathway, generating different switching features in doped AlN. Our results give a microscopic understanding of the ferroelectricity in doped wurtzite materials and broaden the route to improve their ferroelectric properties.