Published in

Optica, Optics Express, 15(30), p. 26787, 2022

DOI: 10.1364/oe.456898

Links

Tools

Export citation

Search in Google Scholar

Amorphous silicon carbide high contrast gratings as highly efficient spectrally selective visible reflectors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report spectrally selective visible wavelength reflectors using hydrogenated amorphous silicon carbide (a-SiC:H) as a high index contrast material. Beyond 610nm and through the near infrared spectrum, a-SiC:H exhibits very low loss and exhibits an wavelength averaged index of refraction of n = 3.1. Here we design, fabricate, and characterize such visible reflectors using a hexagonal array of a-SiC:H nanopillars as wavelength-selective mirrors with a stop-band of approximately 40 nm full-width at half maximum. The fabricated high contrast grating exhibits reflectivity R >94% at a resonance wavelength of 642nm with a single layer of a-SiC:H nanopillars. The resonance wavelength is tunable by adjusting the geometrical parameters of the a-SiC:H nanopillar array, and we observe a stop-band spectral center shift from 635 nm up to 642 nm. High contrast gratings formed from a-SiC:H nanopillars are a promising platform for various visible wavelength nanophotonics applications.