Published in

MDPI, Remote Sensing, 18(15), p. 4606, 2023

DOI: 10.3390/rs15184606

Links

Tools

Export citation

Search in Google Scholar

Land Subsidence Prediction and Analysis along Typical High-Speed Railways in the Beijing–Tianjin–Hebei Plain Area

Journal article published in 2023 by Lin Wang, Chaofan Zhou, Huili Gong, Beibei Chen, Xinyue Xu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High-speed railways in the Beijing–Tianjin–Hebei (BTH) Plain are gradually becoming more widespread, covering a greater area. The operational safety of high-speed railways is influenced by the continuous development of land subsidence. It is necessary to predict the subsidence along the high-speed railways; thus, this work is of critical importance to the safety of high-speed railway operation. In this study, we processed Sentinel-1A data using the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique to acquire the land subsidence in the typical BTH area. Then, we combined the Empirical Mode Decomposition (EMD) and Gradient Boosting Decision Tree (GBDT) methods (EMD-GBDT) to forecast land subsidence along high-speed railways. The results revealed that some parts of the high-speed railways in the BTH plain had passed through or approached the land subsidence area; the maximum cumulative subsidence of the Beijing–Shanghai, Tianjin–Baoding and Shijiazhuang–Jinan high-speed railways reached 326 mm, 384 mm and 350 mm, respectively. The forecasting accuracy for land subsidence along high-speed railways was enhanced by the EMD-GBDT model. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were 0.38 mm to 0.56 mm and 0.23 mm to 0.38 mm, respectively.