Published in

MDPI, Foods, 18(11), p. 2864, 2022

DOI: 10.3390/foods11182864

Links

Tools

Export citation

Search in Google Scholar

Characterization and Preliminary Application of a Novel Lipoxygenase from Enterovibrio norvegicus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Lipoxygenases have proven to be a potential biocatalyst for various industrial applications. However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX) was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of 40.34 U mg−1 at 50 °C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 °C for 6 h, and its melting point temperature reached 78.7 °C. More than 70% of its activity was maintained after incubation at pH 5.0–9.5 and 4 °C for 10 h. In addition, EnLOX exhibited high substrate specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were 12.42 mmol min−1 mg−1, 3.49 μmol L−1, and 16.86 s−1, respectively. LC-MS/MS analysis indicated that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics and rheological properties of wheat dough. These results reveal the potential applications of EnLOX in the food industry.