Published in

American Phytopathological Society, Plant Disease, 2(107), p. 276-280, 2023

DOI: 10.1094/pdis-05-22-0996-sc

Links

Tools

Export citation

Search in Google Scholar

Universal, Rapid, and Visual Detection Methods for Phytoplasmas Associated with Coconut Lethal Yellowing Diseases Targeting 16S rRNA Gene Sequences

Journal article published in 2023 by Shao-Shuai Yu ORCID, Ying-Wen Pan ORCID, Hui Zhu ORCID, Wei-Wei Song
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coconut lethal yellowing (LY) diseases caused by phytoplasmas are devastating diseases for coconut cultivation and seriously threaten the coconut industry around world. The phytoplasmas associated with the LY diseases belonged to six 16Sr groups containing 16SrI, 16SrIV, 16SrXI, 16SrXIV, 16SrXXII, and 16SrXXXII with comparatively higher variable levels. Conserved regions of the 16S rRNA genes of LY phytoplasmas belonging to the six 16Sr groups were obtained in the study. Based on the conserved region sequences of 16S rRNA genes, two sets of LAMP primers, Co-4 and Co-6, were designed and screened, and the rapid and visual detection methods universal for different groups LY phytoplasmas were established. The entire detection reactions of the universal detection methods could be completed with only 30 to 40 min of constant temperature amplification at 64°C, and the detection results were judged by the color changes of the reaction systems, which are convenient and quick. For the six groups of phytoplasmas, the estimated minimum detection limit range of the universal detection primers Co-4 and Co-6 were identical: 4.8 × 101 to 4.8 × 107 copies per 200 μl. The universal detection methods for the LY phytoplasmas established in the study are of great significance for the rapid diagnosis and identification and the efficient monitoring and early warning as well as the port inspection and quarantine of the LY phytoplasmas and their related diseases.