Published in

Wiley Open Access, MedComm, 5(4), 2023

DOI: 10.1002/mco2.372

Links

Tools

Export citation

Search in Google Scholar

Single‐cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell‐type‐specific mechanisms

Journal article published in 2023 by Yunqian Yao, Zhenhua Chen, Qingfeng Wu ORCID, Yi Lu, Xingtao Zhou, Xiangjia Zhu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh myopia is a leading cause of blindness worldwide with increasing prevalence. Retina percepts visual information and triggers myopia development, but the underlying etiology is not fully understood because of cellular heterogeneity. In this study, single‐cell RNA sequencing analysis was performed on retinas of mouse highly myopic and control eyes to dissect the involvement of each cell type during high myopia progression. For highly myopic photoreceptors, Hk2 inhibition underlying metabolic remodeling from aerobic glycolysis toward oxidative phosphorylation and excessive oxidative stress was identified. Importantly, a novel Apoe+ rod subpopulation was specifically identified in highly myopic retina. In retinal neurons of highly myopic eyes, neurodegeneration was generally discovered, and the imbalanced ON/OFF signaling driven by cone‐bipolar cells and the downregulated dopamine receptors in amacrine cells were among the most predominant findings, indicating the aberrant light processing in highly myopic eyes. Besides, microglia exhibited elevated expression of cytokines and TGF‐β receptors, suggesting enhanced responses to inflammation and the growth‐promoting states involved in high myopia progression. Furthermore, cell–cell communication network revealed attenuated neuronal interactions and increased glial/vascular interactions in highly myopic retinas. In conclusion, this study outlines the transcriptional landscape of highly myopic retina, providing novel insights into high myopia development and prevention.