Published in

BMJ Publishing Group, Occupational and Environmental Medicine, 9(80), p. 489-497, 2023

DOI: 10.1136/oemed-2022-108557

Links

Tools

Export citation

Search in Google Scholar

Occupational environment and ovarian cancer risk

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectivesTo investigate employment in an occupation or industry and specific occupational exposures in relation to ovarian cancer risk.MethodsIn a population-based case–control study conducted in Montreal, Canada (2011–2016), lifetime occupational histories were collected for 491 cases of ovarian cancer and 897 controls. An industrial hygienist coded the occupation and industry of each participant’s job. Associations with ovarian cancer risk were estimated for each of several occupations and industries. Job codes were linked to the Canadian job-exposure matrix, thereby generating exposure histories to many agents. The relationship between exposure to each of the 29 most prevalent agents and ovarian cancer risk was assessed. Odds ratios and 95% confidence intervals (OR (95% CI)) for associations with ovarian cancer risk were estimated using logistic regression and controlling for multiple covariates.ResultsElevated ORs (95% CI) were observed for employment ≥10 years as Accountants (2.05 (1.10 to 3.79)); Hairdressers, Barbers, Beauticians and Related Workers (3.22 (1.25 to 8.27)); Sewers and Embroiderers (1.85 (0.77 to 4.45)); and Salespeople, Shop Assistants and Demonstrators (1.45 (0.71 to 2.96)); and in the industries of Retail Trade (1.59 (1.05 to 2.39)) and Construction (2.79 (0.52 to 4.83)). Positive associations with ORs above 1.42 were seen for high cumulative exposure versus never exposure to 18 agents: cosmetic talc, ammonia, hydrogen peroxide, hair dust, synthetic fibres, polyester fibres, organic dyes and pigments, cellulose, formaldehyde, propellant gases, aliphatic alcohols, ethanol, isopropanol, fluorocarbons, alkanes (C5–C17), mononuclear aromatic hydrocarbons, polycyclic aromatic hydrocarbons from petroleum and bleaches.ConclusionsCertain occupations, industries and specific occupational exposures may be associated with ovarian cancer risk. Further research is needed to provide a more solid grounding for any inferences in this regard.