Published in

American Astronomical Society, Astrophysical Journal, 2(954), p. 168, 2023

DOI: 10.3847/1538-4357/ace62e

Links

Tools

Export citation

Search in Google Scholar

Near-Sun In Situ and Remote-sensing Observations of a Coronal Mass Ejection and its Effect on the Heliospheric Current Sheet

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract During the thirteenth encounter of the Parker Solar Probe (PSP) mission, the spacecraft traveled through a topologically complex interplanetary coronal mass ejection (ICME) beginning on 2022 September 5. PSP traversed through the flank and wake of the ICME while observing the event for nearly two days. The Solar Probe ANalyzer and FIELDS instruments collected in situ measurements of the plasma particles and magnetic field at ∼13.3 R S from the Sun. We observe classical ICME signatures, such as a fast-forward shock, bidirectional electrons, low proton temperatures, low plasma β, and high alpha particle to proton number density ratios. In addition, PSP traveled through two magnetic inversion lines, a magnetic reconnection exhaust, and multiple sub-Alfvénic regions. We compare these in situ measurements to remote-sensing observations from the Wide-field Imager for Solar PRobe Plus instrument on board PSP and the Sun Earth Connection Coronal and Heliospheric Investigation on the Solar Terrestrial Relations Observatory. Based on white-light coronagraphs, two CMEs are forward modeled to best fit the extent of the event. Furthermore, Air Force Data Assimilative Flux Transport magnetograms modeled from Global Oscillation Network Group magnetograms and Potential Field Source Surface modeling portray a global reconfiguration of the heliospheric current sheet (HCS) after the CME event, suggesting that these eruptions play a significant role in the evolution of the HCS.