Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Cerebral Cortex, 2023

DOI: 10.1093/cercor/bhad300

Links

Tools

Export citation

Search in Google Scholar

Relationship between default mode network and resting-state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to Alzheimer’s disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer’s disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.