Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Ecology and Evolution, (9), 2021

DOI: 10.3389/fevo.2021.630560

Links

Tools

Export citation

Search in Google Scholar

Unearthing the Potential of Soil eDNA Metabarcoding—Towards Best Practice Advice for Invertebrate Biodiversity Assessment

Journal article published in 2021 by Ameli Kirse, Sarah J. Bourlat ORCID, Kathrin Langen, Vera G. Fonseca
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Metabarcoding has proven to be a powerful tool to assess ecological patterns and diversity from different habitats. Terrestrial invertebrate diversity is frequently based on bulk samples, which require comparatively high sampling effort. With environmental DNA (eDNA) metabarcoding, field sampling effort can be reduced while increasing the number of recovered organism groups. However, a proof of concept is missing for several invertebrate groups, hampering the development of best-practice advice for these groups. This study aims to provide recommendations on key aspects for the processing of soil samples, from sampling effort to choice of DNA extraction method and marker genes. This study uses eDNA metabarcoding as a tool for assessing invertebrate biodiversity in soil samples, specifically comparing two DNA extraction methods (with and without a lysis step) and two genes, 18S and COI markers. The results show that the choice of marker and DNA extraction method (including a lysis step) significantly affect species detection rates and concomitantly observed invertebrate community composition. Combining methods, by using larger amounts of starting material and including a lysis step resulted in an increase of invertebrate species numbers. Together, these methods improved the detection of species with known lower population densities and allowed the assessment of temporary mesofauna. Furthermore, the choice of marker significantly influenced the diversity levels found. The 18S marker allowed the detection of a higher number of annelid and nematode OTUs, while the COI marker was more suitable for detecting changes in arthropod community structure, especially at the species level. This study makes significant advances to the field of invertebrate biodiversity assessment, particularly using metabarcoding tools by addressing several methodological considerations that are key for accurate ecological appraisals.