Published in

MDPI, Remote Sensing, 5(15), p. 1341, 2023

DOI: 10.3390/rs15051341

Links

Tools

Export citation

Search in Google Scholar

Tree-Species Classification and Individual-Tree-Biomass Model Construction Based on Hyperspectral and LiDAR Data

Journal article published in 2023 by Yifan Qiao ORCID, Guang Zheng ORCID, Zihan Du, Xiao Ma, Jiarui Li, L. Monika Moskal ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Accurate classification of tree species is essential for forest resource monitoring, management, and conservation. Based on the classification of tree species, the biomass model at the individual-tree scale of each tree species can be accurately estimated, which can improve the estimation efficiency of individual-tree biomass. In this study, we first extracted four categories of indicators: canopy height model, spectral features, vegetation indices, and texture features from airborne-laser-scanning (ALS) data and hyperspectral data. We used these features as inputs to the random forest algorithm and screened out the optimal variable combination for tree-species classification, with an overall accuracy of 84.4% (kappa coefficient = 0.794). Then, we used ALS data to perform tree segmentation in forest plots to extract tree height, crown size, crown projected area, and crown volume. According to multivariate nonlinear fitting, the parameters of the individual-tree structure were introduced into the constant allometric ratio (CAR) biomass model to establish the biomass models of three tree species: Douglas fir, Red alder, and Bigleaf maple. The results showed that the model-fitting effects were improved after introducing the crown parameters. In addition, we also found that better tree segmentation results led to more accurate structural parameters.