Published in

American Institute of Physics, Review of Scientific Instruments, 10(92), 2021

DOI: 10.1063/5.0057859

Links

Tools

Export citation

Search in Google Scholar

Velocity-tunable beam of continuously decelerated polar molecules for cold ion-molecule reaction studies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Producing high densities of molecules is a fundamental challenge for low-temperature, ion-molecule reaction studies. Traveling-wave Stark decelerators promise to deliver high density beams of cold, polar molecules but require non-trivial control of high-voltage potentials. We have overcome this experimental challenge and demonstrate continuous deceleration of ND3 from 385 to 10 m/s, while driving the decelerator electrodes with a 10 kV amplitude sinewave. In addition, we test an alternative slowing scheme, which increases the time delay between decelerated packets of ND3 and non-decelerated molecules, allowing for better energy resolution of subsequent reaction studies. We characterize this source of neutral, polar molecules suitable for energy-resolved reaction studies with trapped ions at cold translational temperatures. We also propose a combined apparatus consisting of the traveling-wave decelerator and a linear ion trap with a time-of-flight mass spectrometer and discuss to what extent it may achieve cold, energy-resolved, ion-neutral reactions.