Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Medicinal Chemistry, 6(19), p. 570-577, 2023

DOI: 10.2174/1573406419666221202154219

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Biological Evaluation, and Docking Studies of Open-Chain Carbohydrate Amides as Acetylcholinesterase Inhibitors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction: Alzheimer’s disease is a multifactorial syndrome, which is not yet fully understood, causing memory loss, dementia, and, ultimately, death. Acetylcholinesterase inhibitors are the mainstay drugs that are used in disease-symptomatic treatment. In this work, we report a new synthetic route yielding sugar amides as low to moderate acetylcholinesterase inhibitors. Methods: Commercially available diacetone glucose was converted into perbenzyl D-glucono-1,4- lactone, which reacted with aromatic or aliphatic amines to afford the corresponding new amides in a high isolated yield. Docking studies of the most promising hydroxybutylamide and benzylamide were performed to assign binding interactions with acetylcholinesterase and determine the key features for bioactivity. Results: The inhibitors are accommodated in enzyme gorge, blocking the access to Ser203 mainly due to π-π stacking interactions of sugar benzyl groups with the aromatic gorge residues, Tyr337 and Tyr341 for both inhibitors and Trp439 only for the hydroxybutylamide. Conclusion: Bonding is also significant through sugar interaction with the residues Tyr124 and Ser125-OH in both inhibitors. Flexibility of these open-chain structures seems to be quite relevant for the observed binding to acetylcholinesterase.