Published in

Wiley, Annalen der Physik, 2023

DOI: 10.1002/andp.202300204

Links

Tools

Export citation

Search in Google Scholar

Excitation of Forbidden Electronic Transitions in Atoms by Hermite–Gaussian Modes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPhotoexcitation of trapped ions by Hermite–Gaussian (HG) modes from guided beam structures is proposed and investigated theoretically. In particular, simple analytical expressions for the matrix elements of induced atomic transitions are derived that depend both on the parameters of HG beams and on the geometry of an experiment. By using these general expressions, the electric octupole (E3) transition is investigated in an Yb+ ion, localized in the low–intensity center of the HG10 and HG01 beams. It is shown how the corresponding Rabi frequency can be enhanced by properly choosing the polarization of incident light and the orientation of an external magnetic field, which defines the quantization axis of a target ion. The calculations, performed for experimentally feasible beam parameters, indicate that the achieved Rabi frequencies can be comparable or even higher than those observed for the conventional Laguerre–Gaussian (LG) modes. Since HG‐like modes can be relatively straightforwardly generated with high purity and stability from integrated photonics, these results suggest that they may form a novel tool for investigating highly‐forbidden atomic transitions.