Published in

MDPI, International Journal of Molecular Sciences, 3(23), p. 1288, 2022

DOI: 10.3390/ijms23031288

Links

Tools

Export citation

Search in Google Scholar

LCZ696 Protects against Diabetic Cardiomyopathy-Induced Myocardial Inflammation, ER Stress, and Apoptosis through Inhibiting AGEs/NF-κB and PERK/CHOP Signaling Pathways

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present study is designed to determine the effect of LCZ696 on DCM in rats and investigate the underlying mechanism involved. Diabetes was induced by feeding rats with a high-fat diet for six weeks following a single injection of STZ (30 mg/kg). Diabetic rats were divided into three groups (n = 10). LCZ696 and valsartan treatment was started two weeks after diabetic induction and continued for eight weeks. At the end of the treatment, serum and cardiac tissues were analyzed by RT-PCR, Western blot, and ELISA kits. LCZ696 and valsartan ameliorated DCM progression by inhibiting AGEs formation at activity levels; pro-apoptotic markers (BAX/Bcl2 ratio and caspase-3) in mRNA and protein expressions, the NF-κB at mRNA; and protein levels associated with the restoration of elevated proinflammatory cytokines such as the TNF-α, IL-6, and IL-1β at the activity level. Furthermore, LCZ696 and valsartan contribute to restoring the induction of ER stress parameters (GRP78, PERK, eIF2a, ATF4, and CHOP) at mRNA and protein levels. LCZ696 and valsartan attenuated DCM by inhibiting the myocardial inflammation, ER stress, and apoptosis through AGEs/NF-κB and PERK/CHOP signaling cascades. Collectively, the present results reveal that LCZ696 had a more protective solid effect against DCM than valsartan.