Published in

IOP Publishing, Environmental Research Letters, 8(17), p. 084022, 2022

DOI: 10.1088/1748-9326/ac7df5

Links

Tools

Export citation

Search in Google Scholar

Spatiotemporal pattern of global forest change over the past 60 years and the forest transition theory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Forest ecosystems play an indispensable role in addressing various pressing sustainability and social-ecological challenges such as climate change and biodiversity loss. However, global forest loss has been, and still is today, an important issue. Here, based on spatially explicit data, we show that over the past 60 years (1960–2019), the global forest area has declined by 81.7 million ha (i.e. 10% more than the size of the entire Borneo island), with forest loss (437.3 million ha) outweighing forest gain (355.6 million ha). With this forest decline and the population increase (4.68 billion) over the period, the global forest per capita has decreased by over 60%, from 1.4 ha in 1960 to 0.5 ha in 2019. The spatiotemporal pattern of forest change supports the forest transition theory, with forest losses occurring primarily in the lower income countries in the tropics and forest gains in the higher income countries in the extratropics. Furthermore, economic growth has a stronger association with net forest gain than with net forest loss. Our results highlight the need to strengthen the support given to lower income countries, especially in the tropics, to help improve their capacity to minimize or end their forest losses. To help address the displacement of forest losses to the lower income countries in the tropics, higher income nations need to reduce their dependence on imported tropical forest products.