Published in

MDPI, Forests, 8(14), p. 1560, 2023

DOI: 10.3390/f14081560

Links

Tools

Export citation

Search in Google Scholar

Mapping the Spatial Distribution of Aboveground Biomass in China’s Subtropical Forests Based on UAV LiDAR Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Accurately estimating aboveground biomass (AGB) is crucial for assessing carbon storage in forest ecosystems. However, traditional field survey methods are time-consuming, and vegetation indices based on optical remote sensing are prone to saturation effects, potentially underestimating AGB in subtropical forests. To overcome these limitations, we propose an improved approach that combines three-dimensional (3D) forest structure data collected using unmanned aerial vehicle light detection and ranging (UAV LiDAR) technology with ground measurements to apply a binary allometric growth equation for estimating and mapping the spatial distribution of AGB in subtropical forests of China. Additionally, we analyze the influence of terrain factors such as elevation and slope on the distribution of forest biomass. Our results demonstrate a high accuracy in estimating tree height and diameter at breast height (DBH) using LiDAR data, with an R2 of 0.89 for tree height and 0.92 for DBH. In the study area, AGB ranges from 0.22 to 755.19 t/ha, with an average of 121.28 t/ha. High AGB values are mainly distributed in the western and central-southern parts of the study area, while low AGB values are concentrated in the northern and northeastern regions. Furthermore, we observe that AGB in the study area exhibits an increasing trend with altitude, reaching its peak at approximately 1650 m, followed by a gradual decline with further increase in altitude. Forest AGB gradually increases with slope, reaching its peak near 30°. However, AGB decreases within the 30–80° range as the slope increases. This study confirms the effectiveness of using UAV LiDAR for estimating and mapping the spatial distribution of AGB in complex terrains. This method can be widely applied in productivity, carbon sequestration, and biodiversity studies of subtropical forests.