Dissemin is shutting down on January 1st, 2025

Published in

International Journal of Particle Therapy, 1(8), p. 374-382, 2021

DOI: 10.14338/ijpt-20-00042.1

Links

Tools

Export citation

Search in Google Scholar

Activity-Based Costing of Intensity-Modulated Proton versus Photon Therapy for Oropharyngeal Cancer

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract Purpose In value-based health care delivery, radiation oncologists need to compare empiric costs of care delivery with advanced technologies, such as intensity-modulated proton therapy (IMPT) and intensity-modulated radiation therapy (IMRT). We used time-driven activity-based costing (TDABC) to compare the costs of delivering IMPT and IMRT in a case-matched pilot study of patients with newly diagnosed oropharyngeal (OPC) cancer. Materials and Methods We used clinicopathologic factors to match 25 patients with OPC who received IMPT in 2011-12 with 25 patients with OPC treated with IMRT in 2000-09. Process maps were created for each multidisciplinary clinical activity (including chemotherapy and ancillary services) from initial consultation through 1 month of follow-up. Resource costs and times were determined for each activity. Each patient-specific activity was linked with a process map and TDABC over the full cycle of care. All calculated costs were normalized to the lowest-cost IMRT patient. Results TDABC costs for IMRT were 1.00 to 3.33 times that of the lowest-cost IMRT patient (mean ± SD: 1.65 ± 0.56), while costs for IMPT were 1.88 to 4.32 times that of the lowest-cost IMRT patient (2.58 ± 0.39) (P < .05). Although single-fraction costs were 2.79 times higher for IMPT than for IMRT (owing to higher equipment costs), average full cycle cost of IMPT was 1.53 times higher than IMRT, suggesting that the initial cost increase is partly mitigated by reductions in costs for other, non-RT supportive health care services. Conclusions In this matched sample, although IMPT was on average more costly than IMRT primarily owing to higher equipment costs, a subset of IMRT patients had similar costs to IMPT patients, owing to greater use of supportive care resources. Multidimensional patient outcomes and TDABC provide vital methodology for defining the value of radiation therapy modalities.