Published in

Optica, Biomedical Optics Express, 9(14), p. 4468, 2023

DOI: 10.1364/boe.493917

Links

Tools

Export citation

Search in Google Scholar

Optical beam scanner with reconfigurable non-mechanical control of beam position, angle, and focus for low-cost whole-eye OCT imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Whole-eye optical coherence tomography (OCT) imaging is a promising tool in ocular biometry for cataract surgery planning, glaucoma diagnostics and myopia progression studies. However, conventional OCT systems are set up to perform either anterior or posterior eye segment scans and cannot easily switch between the two scan configurations without adding or exchanging optical components to account for the refraction of the eye’s optics. Even in state-of-the-art whole-eye OCT systems, the scan configurations are pre-selected and cannot be dynamically reconfigured. In this work, we present the design, optimization and experimental validation of a reconfigurable and low-cost optical beam scanner based on three electro-tunable lenses, capable of non-mechanically controlling the beam position, angle and focus. We derive the analytical theory behind its control. We demonstrate its use in performing alternate anterior and posterior segment imaging by seamlessly switching between a telecentric focused beam scan to an angular collimated beam scan. We characterize the corresponding beam profiles and record whole-eye OCT images in a model eye and in an ex vivo rabbit eye, observing features comparable to those obtained with conventional anterior and posterior OCT scanners. The proposed beam scanner reduces the complexity and cost of other whole-eye scanners and is well suited for 2-D ocular biometry. Additionally, with the added versatility of seamless scan reconfiguration, its use can be easily expanded to other ophthalmic applications and beyond.