Published in

MDPI, Informatics, 3(10), p. 55, 2023

DOI: 10.3390/informatics10030055

Links

Tools

Export citation

Search in Google Scholar

Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods

Journal article published in 2023 by Jie Xu ORCID, Xing He, Wei Shao, Jiang Bian ORCID, Russell Terry
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Up to 20% of renal masses ≤4 cm is found to be benign at the time of surgical excision, raising concern for overtreatment. However, the risk of malignancy is currently unable to be accurately predicted prior to surgery using imaging alone. The objective of this study is to propose a machine learning (ML) framework for pre-operative renal tumor classification using readily available clinical and CT imaging data. We tested both traditional ML methods (i.e., XGBoost, random forest (RF)) and deep learning (DL) methods (i.e., multilayer perceptron (MLP), 3D convolutional neural network (3DCNN)) to build the classification model. We discovered that the combination of clinical and radiomics features produced the best results (i.e., AUC [95% CI] of 0.719 [0.712–0.726], a precision [95% CI] of 0.976 [0.975–0.978], a recall [95% CI] of 0.683 [0.675–0.691], and a specificity [95% CI] of 0.827 [0.817–0.837]). Our analysis revealed that employing ML models with CT scans and clinical data holds promise for classifying the risk of renal malignancy. Future work should focus on externally validating the proposed model and features to better support clinical decision-making in renal cancer diagnosis.