Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 5(23), p. 2427, 2023

DOI: 10.3390/s23052427

Links

Tools

Export citation

Search in Google Scholar

Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In applications of the Internet of Things (IoT), where many devices are connected for a specific purpose, data is continuously collected, communicated, processed, and stored between the nodes. However, all connected nodes have strict constraints, such as battery usage, communication throughput, processing power, processing business, and storage limitations. The high number of constraints and nodes makes the standard methods to regulate them useless. Hence, using machine learning approaches to manage them better is attractive. In this study, a new framework for data management of IoT applications is designed and implemented. The framework is called MLADCF (Machine Learning Analytics-based Data Classification Framework). It is a two-stage framework that combines a regression model and a Hybrid Resource Constrained KNN (HRCKNN). It learns from the analytics of real scenarios of the IoT application. The description of the Framework parameters, the training procedure, and the application in real scenarios are detailed. MLADCF has shown proven efficiency by testing on four different datasets compared to existing approaches. Moreover, it reduced the global energy consumption of the network, leading to an extended battery life of the connected nodes.