Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Geoscience, 6(14), p. 402-408, 2021

DOI: 10.1038/s41561-021-00734-z

Links

Tools

Export citation

Search in Google Scholar

Global carbon budget of reservoirs is overturned by the quantification of drawdown areas

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractReservoir drawdown areas—where sediment is exposed to the atmosphere due to water-level fluctuations—are hotspots for carbon dioxide (CO2) emissions. However, the global extent of drawdown areas is unknown, precluding an accurate assessment of the carbon budget of reservoirs. Here we show, on the basis of satellite observations of 6,794 reservoirs between 1985 and 2015, that 15% of the global reservoir area was dry. Exposure of drawdown areas was most pronounced in reservoirs close to the tropics and shows a complex dependence on climatic (precipitation, temperature) and anthropogenic (water use) drivers. We re-assessed the global carbon emissions from reservoirs by apportioning CO2and methane emissions to water surfaces and drawdown areas using published areal emission rates. The new estimate assigns 26.2 (15–40) (95% confidence interval) TgCO2-C yr−1to drawdown areas, and increases current global CO2emissions from reservoirs by 53% (60.3 (43.2–79.5) TgCO2-C yr−1). Taking into account drawdown areas, the ratio between carbon emissions and carbon burial in sediments is 2.02 (1.04–4.26). This suggests that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks. Thus, consideration of drawdown areas overturns our conception of the role of reservoirs in the carbon cycle.