Published in

Communications Engineering, 1(2), 2023

DOI: 10.1038/s44172-023-00082-3

Links

Tools

Export citation

Search in Google Scholar

Radiative cooling sorbent towards all weather ambient water harvesting

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractEmerging atmospheric water harvesting (AWH) technologies hold promise for water supply to underdeveloped regions with limited access to liquid water resources. The prevailing AWH systems, including condensation- or sorption-based, mostly rely on a single mechanism limited by working conditions and inferior performance. Here, we synergistically integrate multiple mechanisms, including thermosorption effect, radiative cooling, and multiscale cellulose-water interactions to improve the water harvesting performance with minimal active energy input over a relative humidity (RH) range between 8% to 100%. The proposed system consists of a scalable and sustainable cellulose scaffold impregnated with hygroscopic lithium chloride (LiCl). Cellulose scaffold and LiCl synergistically interact with water at molecular, nanometer, and micrometer scales, achieving a high yield (2.5–16 kg kg−1 at 60–90% RH). The captured water in return facilitates radiative cooling due to its intrinsically high infrared emissivity. An outdoor batch-mode AWH device shows a water uptake up to 6.75 L kg−1 day−1 with a material cost as low as 3.15–5.86 USD kg−1. A theoretical model is also proposed to elucidate the synergistic AWH mechanisms among cellulose-LiCl-water-energy interaction. This AWH strategy provides a potential solution to water scarcity problems in regions with larger seasonal and climate variations, especially arid areas.