Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physiological Measurement, 3(44), p. 035006, 2023

DOI: 10.1088/1361-6579/acbc09

Links

Tools

Export citation

Search in Google Scholar

A novel algorithm to assess the quality of 12-lead ECG recordings: validation in a real telecardiology application

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objective. Automatic detection of Electrocardiograms (ECG) quality is fundamental to minimize costs and risks related to delayed diagnosis due to low ECG quality. Most algorithms to assess ECG quality include non-intuitive parameters. Also, they were developed using data non-representative of a real-world scenario, in terms of pathological ECGs and overrepresentation of low-quality ECG. Therefore, we introduce an algorithm to assess 12-lead ECG quality, Noise Automatic Classification Algorithm (NACA) developed in Telehealth Network of Minas Gerais (TNMG). Approach. NACA estimates a signal-to-noise ratio (SNR) for each ECG lead, where ‘signal’ is an estimated heartbeat template, and ‘noise’ is the discrepancy between the template and the ECG heartbeat. Then, clinically-inspired rules based on SNR are used to classify the ECG as acceptable or unacceptable. NACA was compared with Quality Measurement Algorithm (QMA), the winner of Computing in Cardiology Challenge 2011 (ChallengeCinC) by using five metrics: sensitivity (Se), specificity (Sp), positive predictive value (PPV), F 2, and cost reduction resulting from adoption of the algorithm. Two datasets were used for validation: TestTNMG, consisting of 34 310 ECGs received by TNMG (1% unacceptable and 50% pathological); ChallengeCinC, consisting of 1000 ECGs (23% unacceptable, higher than real-world scenario). Main results. Both algorithms reached a similar performance on ChallengeCinC, although NACA performed considerably better than QMA in TestTNMG (Se = 0.89 versus 0.21; Sp = 0.99 versus 0.98; PPV = 0.59 versus 0.08; F 2 = 0.76 versus 0.16 and cost reduction 2.3 ± 1.8% versus 0.3 ± 0.3%, respectively). Significance. Implementing of NACA in a telecardiology service results in evident health and financial benefits for the patients and the healthcare system.