Published in

Springer, Heart Failure Reviews, 1(28), p. 249-260, 2022

DOI: 10.1007/s10741-022-10264-4

Links

Tools

Export citation

Search in Google Scholar

“Digital biomarkers” in preclinical heart failure models — a further step towards improved translational research

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractInnovations in the development of novel heart failure therapies are essential to further increase the predictive value of early research findings. Animal models are still playing a pivotal role in ‘translational research’. In recent years, the transferability from animal studies has been more and more critically discussed due to persistent high attrition rates in clinical trials. However, there is an increasing trend to implement mobile health devices in preclinical studies. These devices can increase the predictive value of animal models by providing more accurate and translatable data and protect from confounding factors. This review outlines the current prevalence and opportunities of these techniques in preclinical heart failure research studies to accelerate the integration of these important tools. A literature screening for preclinical heart failure studies in large animals implementing telemetry devices over the last decade was performed. Twelve out of 43 publications were included. A variety of different hemodynamic and cardiac parameters can be recorded in conscious state by means of telemetry devices in both, the animal model and the patient. The measurement quality is consistently rated as valid and robust. Mobile health technologies functioning as digital biomarkers represent a more predictive approach compared to the traditionally used invasive measurement techniques, due to the possibility of continuous data collection in the conscious animal. Furthermore, they help to implement the 3R concept (reduction, refinement, replacement) in animal research. Despite this, the use of these techniques in preclinical research has been restrained to date.