Published in

Nature Research, npj Digital Medicine, 1(6), 2023

DOI: 10.1038/s41746-023-00866-z

Links

Tools

Export citation

Search in Google Scholar

An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system (https://seeyourlung.com.cn).