Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 10(15), p. 2676, 2023

DOI: 10.3390/cancers15102676

Links

Tools

Export citation

Search in Google Scholar

Spatial Omics Imaging of Fresh-Frozen Tissue and Routine FFPE Histopathology of a Single Cancer Needle Core Biopsy: A Freezing Device and Multimodal Workflow

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The complex molecular alterations that underlie cancer pathophysiology are studied in depth with omics methods using bulk tissue extracts. For spatially resolved tissue diagnostics using needle biopsy cores, however, histopathological analysis using stained FFPE tissue and the immunohistochemistry (IHC) of a few marker proteins is currently the main clinical focus. Today, spatial omics imaging using MSI or IRI is an emerging diagnostic technology for the identification and classification of various cancer types. However, to conserve tissue-specific metabolomic states, fast, reliable, and precise methods for the preparation of fresh-frozen (FF) tissue sections are crucial. Such methods are often incompatible with clinical practice, since spatial metabolomics and the routine histopathology of needle biopsies currently require two biopsies for FF and FFPE sampling, respectively. Therefore, we developed a device and corresponding laboratory and computational workflows for the multimodal spatial omics analysis of fresh-frozen, longitudinally sectioned needle biopsies to accompany standard FFPE histopathology of the same biopsy core. As a proof-of-concept, we analyzed surgical human liver cancer specimens using IRI and MSI with precise co-registration and, following FFPE processing, by sequential clinical pathology analysis of the same biopsy core. This workflow allowed for a spatial comparison between different spectral profiles and alterations in tissue histology, as well as a direct comparison for histological diagnosis without the need for an extra biopsy.