Published in

American Association for the Advancement of Science, Science Advances, 25(9), 2023

DOI: 10.1126/sciadv.adg1946

Links

Tools

Export citation

Search in Google Scholar

Thin-film design of amorphous hafnium oxide nanocomposites enabling strong interfacial resistive switching uniformity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium oxide–based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. The added Ba prevents the films from crystallizing and leads to ∼20-nm-thin films consisting of an amorphous HfO x host matrix interspersed with ∼2-nm-wide, ∼5-to-10-nm-pitch Ba-rich amorphous nanocolumns penetrating approximately two-thirds through the films. This restricts the RS to an interfacial Schottky-like energy barrier whose magnitude is tuned by ionic migration under an applied electric field. Resulting devices achieve stable cycle-to-cycle, device-to-device, and sample-to-sample reproducibility with a measured switching endurance of ≥10 4 cycles for a memory window ≥10 at switching voltages of ±2 V. Each device can be set to multiple intermediate resistance states, which enables synaptic spike-timing–dependent plasticity. The presented concept unlocks additional design variables for RS devices.