Published in

Nature Research, Nature Chemistry, 2023

DOI: 10.1038/s41557-023-01229-7

Links

Tools

Export citation

Search in Google Scholar

Bismuth radical catalysis in the activation and coupling of redox-active electrophiles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRadical cross-coupling reactions represent a revolutionary tool to make C(sp3)–C and C(sp3)–heteroatom bonds by means of transition metals and photoredox or electrochemical approaches. However, the use of main-group elements to harness this type of reactivity has been little explored. Here we show how a low-valency bismuth complex is able to undergo one-electron oxidative addition with redox-active alkyl-radical precursors, mimicking the behaviour of first-row transition metals. This reactivity paradigm for bismuth gives rise to well-defined oxidative addition complexes, which could be fully characterized in solution and in the solid state. The resulting Bi(III)–C(sp3) intermediates display divergent reactivity patterns depending on the α-substituents of the alkyl fragment. Mechanistic investigations of this reactivity led to the development of a bismuth-catalysed C(sp3)–N cross-coupling reaction that operates under mild conditions and accommodates synthetically relevant NH-heterocycles as coupling partners.